US 2005/0091658 Al

[0049] In FIG. 3, an application program such as appli-
cation program with identifier ID1 requests access to various
resources. An embodiment of the invention receives the
request and processes the request according to the privilege
or access specified for the application program for the
resource. In the example of FIG. 3, the application program
has access to some operating system resources (e.g., files
and settings) at a read-only privilege. If the application
program sends a request for read access to one of these
resources, an embodiment of the invention grants the appli-
cation program read-only access to the one resource. If the
application program sends a request to modify one of these
read-only resources at 302, an embodiment of the invention
denies the application program access to the one resource.
The request fails silently (e.g., no response returned to the
application program) or explicitly (e.g., a negative response
is returned to the application program) at 304. The applica-
tion program also has access to application private resources
(e.g., those files and settings associated with the application
program) at a read-write privilege. Because these resources
are associated with the application program, modification of
these resources generally does not raise operating system
fragility issues. The operating system has little knowledge
and interest in the semantics of these resources.

[0050] The application program has access to other oper-
ating system resources at a protected privilege. If the appli-
cation program sends a request to modify one of these
protected operating system resources (e.g., settings or files)
at 306, an embodiment of the invention returns a virtual
view of the protected resource for the application program at
308. In particular, for the protected privilege, an embodi-
ment of the invention generates a copy, if one does not
already exist, of the requested resource for read-write access
by the application program. In one embodiment in which a
copy does not yet exist, a copy is not generated if the request
from the application program is only for read access. The
copy of the resource is for use only by the application
program or group of application programs having the same
application identifier. The application identifier allows an
embodiment of the invention to provide application pro-
grams with different application identifiers their own virtual
view or copy of one or more resources. For example, the
operating system maintains its own copy of a system setting
while an application program writing a value to the system
setting receives its own copy of the system setting. In some
exemplary embodiments, different applications may receive
different virtual views of system settings (e.g., registry
entries). Depending on the type of system protection desired
(e.g., by a user), a resource may be virtualized per user
and/or per application program. Changes to a virtualized
resource by an application program with a particular appli-
cation identifier have no impact (e.g., are not visible) to
application programs with other application identifiers. By
providing individual applications or groups of applications
with their own view of selected system resources, the
operating system may prevent one application program from
overwriting or otherwise disrupting resources needed by
other application programs.

[0051] Inone embodiment, an application program uses a
virtualized copy of a resource during installation of the
application program on a computing system. For example,
the application program may apply a system setting to the
computing system using a generated copy of a file storing
the system setting.

Apr. 28, 2005

[0052] The application program has access to application
private resources. Application private resources include
resources that are specific to the application program. The
operating system and other application programs are gener-
ally unaffected by application private resources. If the appli-
cation program sends a request to modify an application
private resource at 310, an embodiment of the invention
allows and processes the request at 312.

[0053] The application program may send a request to
change system extensibility (e.g., add functionality to the
operating system) at 314. In one embodiment, an embodi-
ment of the invention allows the requested change at 312.

[0054] Changes to system extensibility and application
private resources (e.g., files and system settings) may be
logged or otherwise recorded at 318. Generally, system
extensibility changes provide additional functionality to the
operating system without modifications to the operating
system. Recording the system extensibility changes and
changes to application private resources enables the rollback
of the changes as well as the complete removal or uninstal-
lation of the application program associated with the
changes.

[0055] Example Mitigation Strategy

[0056] Referring next to FIG. 4, an exemplary flow chart
illustrates operation of a method of providing access control
for files, system settings, and extensions. In the example of
FIG. 4, an operating system implements the method. How-
ever, an application program or service not associated with
the operating system may also implement the method. In
FIG. 4, a process is created to execute an application
program (e.g., Xxxx.exe) via a function such as CreatePro-
cess(). The operating system determines if there is an
application identifier associated with the application pro-
gram at 402. If not, the operating system determines the
application identifier and persists this information (e.g.,
stores the determined application identifier in the manifest)
at 404. The application program executes at 406 and per-
forms an operation. The operating system analyzes the
operation. For example, in one embodiment, only authorized
trusted install processes executing with special privileges
may add, modify or delete in protected areas. Application
programs are blocked from creating or modifying data in
protected areas.

[0057] In the embodiment of FIG. 4, if the operation is a
file operation at 408, the operating system determines if the
file operation will have an impact on a file (e.g., the file
operation modifies the file) at 410. If the file operation will
not have an impact on the file, the operating system allows
the file operation to be performed on the file system at 414.
If the file operation will have an impact on the file, the
operating system performs a mitigated file operation at 412
according to a mitigation strategy such as illustrated in FIG.
3. The change to the file system, if any, is recorded in a log
at 415.

[0058] 1If the operation is a system setting operation at 416,
the operating system determines if the system setting opera-
tion will have an impact on a system setting (e.g., the system
setting operation modifies the system setting) at 418. If the
system setting operation will not have an impact on the
system setting, the operating system allows the system
setting operation to be performed on the system setting at

